$$\frac{Group Theory}{Wack # 4, Leduce #16}$$

I Generating sets

· lecall a cyclic group 6 is generated by a single element:
 $G = \langle a \rangle = \frac{1}{2} e_{2a}, a_{2}^{*}, ..., a_{n}^{*}, ..., Y$

· let groups weed 2 or owere generators.

Def Let S \subseteq G be a subset of a group G. The
subgroup 46 generated by S is:
 $\left[(S \rangle := \{g \in G : g = x_{1}^{*}, x_{n}^{*}, free some x_{i} \in S \} \}$

mate: $S \subseteq \langle S \rangle$ all pacific furthe product of element in S and their owere in S and their owere in the source of the subset $f_{1} = \chi_{1} - \chi_{n}$ is $\chi_{1} - \chi_{n} = \chi_{1} - \chi_{n}$.

where $\kappa_{1}, \gamma_{i} \in S \rightarrow \chi_{i}^{*}$ is indeed a subgroup of G:
 $\left[et \ g = x_{1} - x_{n} \ g \in \langle S \rangle$. Then, $\int h = \langle x_{1} - x_{n} \rangle$ is group in their owere in S and their owere in S and their owere is $2 e \langle S \rangle$. Then $\int h = \langle x_{1} - \chi_{n} \rangle$ is $2 e \langle S \rangle$. Then $\int h = \langle x_{1} - \chi_{n} \rangle$ is $2 e \langle S \rangle$. Then $\int h = \langle x_{1} - \chi_{n} \rangle$ is $2 e \langle S \rangle$.
Where $\kappa_{1}, \gamma_{i} \in S \rightarrow \gamma_{i}^{*} \in S$ is indeed a subgroup of G:
 $\left[et \ g = x_{1} - \chi_{n} \rangle$ is $2 e \langle S \rangle$. Then $\int h = \langle x_{1} - \chi_{n} \rangle$ is $2 e \langle S \rangle$.
Where $\kappa_{1}, \gamma_{i} \in S \rightarrow \gamma_{i}^{*} \in S$ is indeed a subgroup of G:
 $\left[h = \gamma_{m} - \gamma_{m} \rangle$ is $2 e \langle S \rangle$. Then $\int h = \langle x_{1} - \chi_{n} \rangle$ is $2 e \langle S \rangle$.
Where $\kappa_{1}, \gamma_{i} \in S \rightarrow \gamma_{i}^{*} \in S$ is $2 e \langle S \rangle$. Then $\int h = \langle x_{1} - \chi_{n} \rangle$ is $2 e \langle S \rangle$.
 $\left[x_{1}^{*} = \chi_{m}^{*} - \gamma_{m}^{*} \in S \rangle$ is $2 e \langle S \rangle \leq 1 e^{2} + 2 e^{2} +$

$$\frac{\text{Examples}}{(i) \quad 6 = \mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}} \quad \text{is generated by } X = (1,0) \text{ and } y=(0,1)}$$
(which the same as \mathbb{R}^2 is - heated by $X \otimes Y$)
i.e.: $\mathbb{Z}^2 = \langle X, Y \rangle$
in other winds, every pair $(M, n) \in \mathbb{Z}^2$ can be
written as
 $(M, N) = \pm (1,0) \pm \cdots \pm (1,0) \pm (0,1) \pm \cdots \pm (0,1)$
eg: $(5, -3) = (1,0) \pm \cdots \pm (1,0) - (0,1) - \cdots - (0,1)$
 \mathbb{Z}
 $(\mathbb{Z}) \quad 6 = \mathbb{Z}_3 \qquad a^{d-2} / (\mathbb{Z} \times \mathbb{Z}^d)^a$
Let $a = 1x^0$ with then $= (\frac{1}{2} \times \frac{3}{3})$
 $b = \text{reflective in dashed oxis} = (\frac{1}{2} \times \frac{3}{3})$
Then $G \notin S$ generated by a and b :
 $S_3 = \int (\frac{1\cdot3}{12}), (\frac{1\cdot2}{231}), (\frac{1\cdot2}{312}), (\frac{1\cdot2}{213}), (\frac{1\cdot2}{321}), (\frac{1\cdot2}{321})$

t.e., the set of all i commutations in G.
Examples: (1) G abelien (or, commutations)
$$\Rightarrow 6' = \frac{1}{2}e^{3}$$

(2) $G = S_{3} \Rightarrow G' = \frac{1}{2}e_{,a}a^{2}f^{2} \Rightarrow \mathbb{Z}_{3}$
reason: $ba = a^{2}b \Rightarrow a^{2} = bab^{-1} \Rightarrow a = bab^{-a^{-1}} = [l,a]$
Proposition (1) G' is a mormal subgroup of G.
(2) G/G' is abelian
(3) If N & G, thek:
 G/N is abelian $\Leftrightarrow G' = N$
Proof (1) G/G' is a subgroup:
 $gh = aba^{-1}b^{-1}$, $h = xyxh^{-1}$ for some
 $\Rightarrow gh = aba^{-1}b^{-1}$, $h = xyxh^{-1}$ for some
 $\Rightarrow gh = aba^{-1}b^{-1}$, $xyx^{-1}y^{-1}GG'$
 $a we need <...>here!
 $geG' \Rightarrow g = aba^{-1}b^{-1}$ abe G
 $\Rightarrow g^{-1} = bab^{-1}a^{-1} \in G'$ (by def of (1)
 $h^{-1}b = xgx^{-1}g^{-1} \in G'$ (by def of (1)
 $h^{-1}b = xgx^{-1}g^{-1} \in G'$ (by def of (1)
 $h^{-1}b = xgx^{-1}g^{-1} \in G'$ (by def of (1)
 $h^{-1}b = xgx^{-1}g^{-1} \in G'$ (1)
 $h^{-1}b = xgx^{-1}g^{-1} = xg^{-1}b^{-1}g$$

$$\frac{\text{Examples}}{\text{formple}} = G_{44} = \begin{cases} G & f G \cong Z_{p} \\ (p \text{ prime}) \\ (p$$